Newly Discovered Exoplanet Is The Most Distant Ever Detected


This artist’s conception shows the newly discovered alien planet also Known as OGLE-2014-BLG-0124Lb , which is about 13,000 light-years from Earth.

Astronomers have found an exoplanet nearly 13,000 light-years away, making it one of the most distant planets known to man. This discovery is important not because of the planet itself, a gas giant about half the size of Jupiter, but because what it means for the future of planetary discovery and mapping.

“For context, most of the planets we do know about are a factor of 10-100 times closer than OGLE-2014-BLG-0124,” Dr. Jennifer Yee, a NASA Sagan Fellow at the Harvard-Smithsonian Center for Astrophysics in Cambridge

Far, far away.

The microlensing technique has helped astronomers discover about 30 distant alien planets in our Milky Way’s bulge, the galaxy’s central area of mostly old stars, gas, and dust.

The farthest known exoplanet resides some 25,000 light years away in the bulge of our galaxy, Yee said in the email. The bulge is a very different environment from the Milky Way’s disk, where our own solar system is located.

According to Yee, no exoplanets have been found outside of our galaxy, which spans about 100,000 light years.

Like early explorers mapping the continents of our globe, astronomers are busy charting the spiral structure of our galaxy, the Milky Way. Using infrared images from NASA's Spitzer Space Telescope, scientists have discovered that the Milky Way's elegant s

This artist’s map of the Milky Way shows the location of some of the farthest known exoplanets, including OGLE-2014-BLG-0124Lb.

Comparing planets to planets. Astronomers hope not only to gain a better understanding of the distribution of planets in the Milky Way, but also to gather enough detail about distant planets to compare them with those closer to Earth. More than 1,000 exoplanets closer to home have been discovered by the planet-hunting Kepler mission and ground-based observatories, reported.

“We would really like to know whether planets form in the central bulge of our galaxy the same way that they do here, near the sun, where the overwhelming majority of planets have been found,” Dr. Andrew Gould, professor of math and physical sciences at Ohio State University, and a co-author of the paper describing the newfound exoplanet, told The Huffington Post.

The Christian Science Monitor reported that the Spitzer telescope is scheduled to observe about 120 more “microlensing” events this summer, which could lead to the discovery of even more distant exoplanets.


This infographic explains how NASA’s Spitzer Space Telescope can be used in tandem with a ground-based telescope to measure the distances to planets using the “microlensing” technique.

Source: huffingtonpost

NASA’s Dawn Probe Sees Dwarf Planet Ceres as a Crescent


After spending several weeks in the shadow of Ceres, NASA’s Dawn spacecraft is finally getting a close-up glimpse of the dwarf planet.

For Those Who Don’t Know About CERES : Ceres is the largest object in the asteroid belt, which lies between the orbits of Mars and Jupiter. It is composed of rock and ice, is 950 kilometers (590 miles) in diameter, and comprises approximately one third of the mass of the asteroid belt. It is the only dwarf planet in the inner Solar System and the only object in the asteroid belt known to be unambiguously rounded by its own gravity.

Ceres’ cratered north pole blazes through the darkness in new images captured by Dawn on April 10. The photos are the highest-resolution views of the world that Dawn has gotten since entering Ceres’ orbit on March 6, NASA officials said.


Dawn was about 21,000 miles (33,000 kilometers) from the dwarf planet when the pictures were taken, and mission team members promise even better views of Ceres in the months to come.

Full science observations begin April 23, when lighting conditions will be better for Dawn and the probe will be even closer to Ceres — just 8,400 miles (13,500 kilometers) above the surface. Dawn will begin moving even lower down on May 9.

In future weeks, NASA hopes the mission will help scientists better understand a key mystery of Ceres: strange bright spots on its surface that, in some cases, have different temperatures than the terrain surrounding them. Mission scientists still don’t know what the spots are made of.

The $466 million Dawn mission, which launched in September 2007, aims to better characterize the solar system’s early days by studying Ceres and Vesta, two intact protoplanets that are the largest denizens of the asteroid belt between Mars and Jupiter. The probe spent 14 months at the 330-mile-wide (530-kilometer-wide) Vesta in 2011 and 2012, then headed to Ceres.

Mission scientists said they expect that Ceres, which is about 590 miles (950 km) wide, will be wetter than Vesta, and made of different stuff. Some researchers think Ceres may even harbor liquid water beneath its surface, perhaps making the dwarf planet capable of hosting life as we know it.

Source : NBS-news,Sci-news,Wikipedia

This Is The First Ever Color Picture of Pluto


New Horizons spacecraft is now only three months away from its historic sweep through the Pluto-Charon system in mid-July. First image in color!


NASA’s New Horizons spacecraft acquired its first picture of Pluto and its largest moon, Charon, in color on April 9. It’s the first color image ever made of the Pluto system by a spacecraft on approach. Neither Pluto nor Charon is well resolved here, but their distinctly different appearances can already be seen. Image via NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute.

NASA’s New Horizons spacecraft team released this tantalizing first color image of Pluto and its Texas-sized moon Charon. The team called this image a preliminary reconstruction, which they said will be refined later. The spacecraft acquired the image from a distance of about 71 million miles (115 million kilometers)-roughly the distance from the sun to Venus. New Horizons is now only three months from its historic encounter with Pluto. The flyby through the Pluto system will take place on July 14, at which time the spacecraft will deliver color images that eventually show surface features as small as a few miles across.

New Horizons is the fastest spacecraft ever launched and may be the only spacecraft to sweep past Pluto in our lifetimes. It has traveled a longer time and farther away – more than nine years and three billion miles (4.8 billion km) – than any space mission in history to reach the Pluto system, which consists of the dwarf planet and its five known moons.

NASA pointed out that New Horizons’ flyby of the Pluto system on July 14 will:

… complete the initial reconnaissance of the classical solar system. This mission also opens the door to an entirely new ‘third’ zone of mysterious small planets and planetary building blocks in the Kuiper Belt, a large area with numerous objects beyond Neptune’s orbit.

Principal investigator Alan Stern said the mission would mark the first up-close look at a binary planet. He called Pluto a binary because its large moon Charon is so nearly like Pluto in size.


Between now and July 14, New Horizons will get closer and closer to Pluto and its moons, and the image quality will rapidly improve. At closest approach, New Horizons will sweep through the Pluto system at a speed of 30,000 mph (50,000 kilometers per hour).

Source :

Hubble Space Telescope Views Globular Cluster Messier 22

The crammed centre of Messier 22

This newly released Hubble image shows Messier 22, the brightest globular cluster visible from the northern hemisphere.

A globular cluster is a spherical collection of stars that orbits a galactic core as a satellite. Globular clusters are very tightly bound by gravity, which gives them their spherical shapes and relatively high stellar densities toward their centers.

Messier 22 is located in the constellation Sagittarius, approximately 10,400 light-years away.

It was the first globular cluster to be discovered. German astronomer Johann Abraham Ihle found it on August 26, 1665, while observing Saturn.

The cluster, also known as M22 or NGC 6656, has a diameter of about 70 light-years and half a million solar masses.

According to astronomers, Messier 22 orbits the galactic center once every 200 million years.

The cluster is an easy object for the naked eye to see. Despite its relative proximity to us, the light from the cluster’s stars is not as bright as it should be as it is dimmed by dust and gas located between us and Messier 22.

As they are leftovers from the early Universe, globular clusters are popular study objects for astronomers.

Messier 22 has fascinating additional features: six planet-sized objects that are not orbiting a star have been detected in the cluster; it seems to host two black holes.

The cluster is one of only three ever found to host a planetary nebula – a short-lived gaseous shells ejected by massive stars at the ends of their lives.

Source : Sci-news

Eye of Super Typhoon Maysak Looks “Like a Black Hole” from Space


Maysak, a category 4 Super Typhoon, as photographed by astronaut Terry Virts on board the International Space Station. Credit: NASA/Terry Virts.

From his perch on the International Space Station, astronaut Terry Virts has been taking some beautiful photos of Earth and space and sharing them on social media.

“Looking down into the eye – by far the widest one I’ve seen,” he tweeted. “It seemed like a black hole from a Sci-Fi movie.”


According to, Super Typhoon Maysak is one of the strongest cyclones in history during the months of January, February and March. It has slammed several Micronesian islands, killing 5 people, and is now on its way to the Philippines. As of early on April 1, Maysak had sustained winds of 240 kph (150 mph), equivalent of a Category 4 hurricane. Gusts as high as 390 kph (180 mph) are possible with this storm.

The typhoon is expected to weaken, but still poses a threat to the islands in its path:


Source : Universe Today

NASA unveils 100-millionth picture of the sun


An instrument onboard the Solar Dynamics Observatory captured NASA’s 100-millionth image of the sun. Four telescopes work parallel to capture eight images of the sun and cycle through 10 different wavelengths every 12 seconds.

A National Aeronautics and Space Administration instrument aboard a sun-viewing spacecraft has captured its 100-millionth image of the sun.

The instrument, on the Solar Dynamics Observatory, is the Atmospheric Imaging Assembly and uses four telescopes. The photo was taken Jan.19, according to NASA.

In the nearly five years since its start in 2010, Solar Dynamics Observatory has captured images of the sun “to help scientists better understand how the roiling corona gets to temperatures some 1,000 times hotter than the sun’s surface, what causes giant eruptions such as solar flares, and why the sun’s magnetic fields are constantly on the move,” NASA says.

Source : USA TODAY

Nasa’s NuSTAR probe takes first spectacular, Christmassy picture of the sun


Nasa’s NuSTAR probe Picture (Click Image to Download)

Nasa’s NuSTAR probe has taken its first picture of the sun — and the stunning image  shows X-rays streaming off the star.

NuSTAR stands for Nuclear Spectroscopic Telescope Array. It is an X-ray telescope that has been flying around space in Earth’s orbit since 2012.

The image is the first picture that NuSTAR has taken of the sun, and is the most sensitive solar picture ever taken using high-energy X-rays.

The parts of the picture from NuSTAR are the green and blue at the top, which depict solar high-energy emissions. The blue represents more energetic emissions than the green ones.

The picture is overlaid on top of a picture of the sun taken by the Solar Dynamics Observatory. That took the red part of the photo, which represents ultraviolet light.

NuSTAR was sent out into space to conduct a survey for black holes. By looking for high-energy X-rays, the project hopes to shine new light on how stars collapse and form black holes, and how particles work in active galaxies.

But the new picture is actually a plan formulated in 2007, long before NuSTAR was launched into space. Other telescopes are able to look at the sun because it is too bright, but since NuSTAR looks specifically at higher-energy X-rays, it’s able to take pictures of the star without damaging its sensors.

NuSTAR is going to keep watching the sun, in the hope of seeing nanoflares, which would explain the mystery of why the outer atmosphere of the sun is so hot compared with the surface. Nanoflares have been proposed as the solution to the mystery and if NuSTAR were to catch them it would help solve the puzzle.

“NuSTAR will be exquisitely sensitive to the faintest X-ray activity happening in the solar atmosphere, and that includes possible nanoflares,” said David Smith, a solar physicist and member of the NuSTAR team at University of California, Santa Cruz.

The probe might also be able to spot axions, one of the leading candidates for dark matter. Dark matter refers to the idea that there is heavy matter in the universe that we are unable to see. In the unlikely event that NuSTAR were to spot axions, it would solve another mystery at the heart of astrophysics.

Source :

‘Perfect Storm’ Suffocating Star Formation around a Supermassive Black Hole


(Click Image to Download)

High-energy jets powered by supermassive black holes can blast away a galaxy’s star-forming fuel — resulting in so-called “red and dead” galaxies: those brimming with ancient red stars yet little or no hydrogen gas available to create new ones.

Now astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have discovered that black holes don’t have to be nearly so powerful to shut down star formation. By observing the dust and gas at the center NGC 1266, a nearby lenticular galaxy with a relatively modest central black hole, the astronomers have detected a “perfect storm” of turbulence that is squelching star formation in a region that would otherwise be an ideal star factory.


Fig 1. Artist impression of the central region of NGC 1266. The jets from the central black hole are creating turbulence in the surrounding molecular gas, suppressing star formation in an otherwise ideal environment to form new stars. Credit: B. Saxton (NRAO/AUI/NSF)

This turbulence is stirred up by jets from the galaxy’s central black hole slamming into an incredibly dense envelope of gas. This dense region, which may be the result of a recent merger with another smaller galaxy, blocks nearly 98 percent of material propelled by the jets from escaping the galactic center.

“Like an unstoppable force meeting an immovable object, the molecules in these jets meet so much resistance when they hit the surrounding dense gas that they are almost completely stopped in their tracks,” said Katherine Alatalo, an astronomer with the California Institute of Technology in Pasadena and lead author on a paper published in the Astrophysical Journal. This energetic collision produces powerful turbulence in the surrounding gas, disrupting the first critical stage of star formation. “So what we see is the most intense suppression of star formation ever observed,” noted Alatalo.

Previous observations of NGC 1266 revealed a broad outflow of gas from the galactic center traveling up to 400 kilometers per second. Alatalo and her colleagues estimate that this outflow is as forceful as the simultaneous supernova explosion of 10,000 stars. The jets, though powerful enough to stir the gas, are not powerful enough to give it the velocity it needs to escape from the system.

Continue reading ‘Perfect Storm’ Suffocating Star Formation around a Supermassive Black Hole

ALMA Identifies Gas Spirals as a Nursery of Twin Stars


(Click Image to Download)

With new Atacama Large Millimeter/submillimeter Array (ALMA) observations, astronomers led by Shigehisa Takakuwa, Associate Research Fellow at the Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taiwan, have found spiral arms of molecular gas and dust around “baby twin” stars. Gas motions supplying materials to the twin were also identified. These results unveil for the first time, the mechanism of the birth and growth of binary stars, which are ubiquitous throughout the Universe. The study was published on November 20 in The Astrophysical Journal.


Fig 1. Gas and dust disks around L1551 NE spotted by ALMA. Credit: ALMA (ESO/NAOJ/NRAO) / Takakuwa et al.

Stars form in interstellar clouds of molecular gas and dust. Previous studies of star formation focused primarily on single stars like the Sun, and a standard picture of single star formation has been established. According to this picture, a dense gas condensation in an interstellar cloud collapses gravitationally to form a single protostar at the center. Previous observations have found such collapsing gas motions feeding material toward the central protostars.

Compared to single star formation, our understanding of binary star formation has been limited, even though more than half of stars with a mass similar to that of the Sun are known to be binaries. It is thus crucial to observe the physical mechanism of binary formation to obtain a more comprehensive understanding of star formation. Theory suggests that a disk surrounding a young binary will feed material to the central “baby twin” in order for them to grow. While recent observations have found such disks (known as “circumbinary disks”), it was not possible to image the structure and gas motions because of the insufficient imaging resolution and sensitivity.


Fig 2. Comparison of the disks in simulation and observation. The right panel shows the disk image simulated with ATERUI, and the left panel the real ALMA image. Credit: ALMA (ESO/NAOJ/NRAO)/ Takakuwa et al.

Continue reading ALMA Identifies Gas Spirals as a Nursery of Twin Stars

Ancient Mars May Have Been More Habitable Than We Thought


An artist’s impression of what ancient Mars may have looked like, based on geological data (Click Image to Download)

Data collected by the Curiosity Rover suggests Mars once featured a moderate climate capable of fostering lakes of liquid water and even a vast sea, and that this climate could have extended to many parts of the Red Planet.

NASA’s Curiosity Rover is currently investigating the lowest sedimentary layers of Mount Sharp, a section of rock 500 feet (150 meters) high known as the Murray formation. Observations taken by the robotic probe suggests the mountain was produced by sediments deposited in a large lake bed over tens of millions of years. The observation strongly suggests that ancient Mars maintained a long-lasting water-friendly climate.

According to NASA scientists, it’s an hypothesis that’s challenging the notion that warm and wet conditions were transient, local, or only underground. It now appears that Mars’ ancient, thicker atmosphere raised temperatures above freezing globally, but NASA scientists aren’t entirely sure how the atmosphere produced the required effects.

A Mountain in a Crater

Scientists have struggled to explain why the mountain sits inside a crater. Last year, a study suggested that the 3.5-mile-tall Mount Sharp formed as strong winds carried dust and sand into the crater in which it rests. It was actually bad news at the time because it suggested that the Gale Crater probably never contained a lake, which was one of the primary reasons why NASA sent Curiosity there in the first place.

But this new analysis has revived an older theory which suggests that Mount Sharp is the eroded remnant of sedimentary layers that once filled the crater — layers of silt that were originally deposited on a massive lakebed.


Cross-bedding seen in the layers of this Martian rock is evidence of movement of water recorded by waves or ripples of loose sediment the water passed over. Image credit: NASA/JPL-Caltech/MSSS.

Thanks to on-the-ground observations made by Curiosity, NASA scientists have now caught a glimpse of Mount Sharp’s lower flanks, which feature hundreds of rock layers. These layers, which alternate between lake, river, and wind deposits, bear witness to the repeated filling and evaporation of a Martian lake. Rivers carried sand and silt to the lake, depositing the sediments at the mouth of the river to form deltas. It was a cycle that repeated over and over again.


Cross-bedding seen in the layers of this Martian rock is evidence of movement of water recorded by waves or ripples of loose sediment the water passed over. Image credit: NASA/JPL-Caltech/MSSS.

“The great thing about a lake that occurs repeatedly, over and over, is that each time it comes back it is another experiment to tell you how the environment works,” noted Curiosity Project Scientist John Grotzinger in a NASA report. “As Curiosity climbs higher on Mount Sharp, we will have a series of experiments to show patterns in how the atmosphere and the water and the sediments interact. We may see how the chemistry changed in the lakes over time. This is a hypothesis supported by what we have observed so far, providing a framework for testing in the coming year.”fcc2setcjpg8el3rhq77

After the sediments hardened to rock, the resulting layers of sediment were sculpted over time into a mountainous shape by wind erosion that carved away the material between the crater perimeter and what’s now the edge of the mountain.

Greater Potential for Life?

The new discovery has major implications for our understanding of the Red Planet. It suggests Mars was far warmer and wetter in its first two billion years than previous assumed. It also suggests that Mars experienced a vigorous and dynamic global hydrological cycle that involved rains or snows to maintain such moderate conditions.


A pic depicting a lake of water partially filling Mars’ Gale Crater, receiving runoff from snow melting on the crater’s northern rim. Image credit: NASA/JPL-Caltech.

Source :