The world’s biggest and most expensive scientific experiment is ready to re-start


cut dipole tunnel (0-00-00-00)

Underneath some nondescript farmland near Geneva, on the border of France and Switzerland, the world’s biggest and most expensive scientific experiment is ready to re-start.

Physicists hope it could lead to discoveries that could potentially represent the biggest revolution in physics since Einstein’s theories of relativity.

Among them is Prof Jordan Nash from Imperial College London, who is working on the CMS experiment at the LHC.

“We are opening a new window on the Universe and looking forward to seeing what’s there,” he said.
“As much as we have a lot of theories of what might be out there we don’t know. We’d love to find something completely unexpected and we might, and that’s the exciting bit.”

Why are scientists doubling the LHC’s energy?

They want a glimpse into a world never seen before. By smashing atoms harder than they have been smashed before physicists hope to see peel back another veil of reality.

The aim of the various theories of physics is to explain how the Universe was formed and how the bits that make it up work.

One of the most successful of these theories is called the “Standard Model“.

It explains how the world of the very, very small works.

Just as the world became very strange when Alice shrunk after drinking a potion in the children’s book Alice’s Adventures in Wonderland, physicists have found things are quite different when they study the goings on at scales that are even smaller than the size of an atom.

By doubling the energy of the LHC, it will enable them to discover new characters in the wonderful and mysterious tale of how the Universe works and came to be.

What is the Standard Model?

The Standard Model describes how the basic building blocks that make up atoms and govern the forces of nature interact.

And just as in Alice’s stories it features some eccentric characters, notably a family of 17 elementary particles.

Some are familiar from school physics lessons, household names if you like.

The biggest celebrity in the sub-atomic world is perhaps the electron, which orbits the atom and is involved in electricity and magnetism.

Another flashy A-lister is the photon, which is a particle of light.

But most particles from the Standard Model family are more niche, a little more art house if you like, and have strange names.

18dy75y04zvdppng

With the discovery of the sub-atomic world’s biggest celeb of all, the Higgs boson, scientists have now detected all the particles predicted by the Standard Model: a theory that beautifully explains how the Universe works in intricate detail.

What’s next?

Who knows, but possibly one of the biggest changes in thinking in physics for 100 years.

The sub-atomic world is set to become “curiouser and curiouser”.

Source : ITV , BBC

Advertisements

Forget dark matter, STRANGE matter could be lurking somewhere in the universe


eagle_nebula_in_universe-1920x1080

(Click image to Download)

  • Scientists at the National Institute for Space Research in Brazil say an undiscovered type of matter could be found in neutron stars
  • Here matter is so dense that it could be ‘squashed’ into strange matter
  • This would create an entire ‘strange star’ – unlike anything we have seen
  • However, the exact properties of strange matter are unknown
  • If it exists, though, it could help scientists discover ripples in space-time known as gravitational waves

Neutron stars are among the densest objects in the universe – just a spoonful of matter from one of them would weigh more than the moon.

But inside these remarkable stellar objects, which are no bigger than a city on Earth, a remarkable process might be taking place.

Scientists have revealed their matter might become so squashed that it turns into ‘strange matter’ – and observing so-called strange stars could unlock some of the secrets of the universe.

magnetar-flare1

Scientists at the National Institute for Space Research in Brazil say an undiscovered type of matter could be found in neutron stars (illustration shown). Here matter is so dense that it could be ‘squashed’ into strange matter. This would create an entire ‘strange star’ – unlike anything we have seen

The latest theory was proposed by Dr Pedro Moraes and Dr Oswaldo Miranda, both of the National Institute for Space Research in Brazil.

They say that some types of neutron stars might be made of a new type of matter called strange matter.

What the properties of this matter would be, though, are unknown – but it would likely be a ‘liquid’ of several types of sub-atomic particles.

Source: daily mail

Ripples in Space-Time Could Reveal ‘Strange Stars’


Follow us on Google+ , Twitter and Facebook

BinaryStars

(Click Image to Download)

By looking for ripples in the fabric of space-time, scientists could soon detect “strange stars” — objects made of stuff radically different from the particles that make up ordinary matter, researchers say.

The protons and neutrons that make up the nuclei of atoms are made of more basic particles known as quarks. There are six types, or “flavors,” of quarks: up, down, top, bottom, charm and strange. Each proton or neutron is made of three quarks: Each proton is composed of two up quarks and one down quark, and each neutron is made of two down quarks and one up quark.

In theory, matter can be made with other flavors of quarks as well. Since the 1970s, scientists have suggested that particles of “strange matter” known as strangelets — made of equal numbers of up, down and strange quarks — could exist. In principle, strange matter should be heavier and more stable than normal matter, and might even be capable of converting ordinary matter it comes in contact with into strange matter. However, lab experiments have not yet created any strange matter, so its existence remains uncertain.

Why Are Quark Stars So Strange?

One place strange matter could naturally be created is inside neutron stars, the remnants of stars that died in catastrophic explosions known as supernovas. Neutron stars are typically small, with diameters of about 12 miles (19 kilometers) or so, but are so dense that they weigh as much as the sun. A chunk of a neutron star the size of a sugar cube can weigh as much as 100 million tons.

Under the extraordinary force of this extreme weight, some of the up and down quarks that make up neutron stars could get converted into strange quarks, leading to strange stars made of strange matter, researchers say.

A strange star that occasionally spurts out strange matter could quickly convert a neutron star orbiting it in a binary system into a strange star as well. Prior research suggests that a neutron star that receives a seed of strange matter from a companion strange star could transition to a strange star in just 1 millisecond to 1 second.

Continue reading Ripples in Space-Time Could Reveal ‘Strange Stars’

Evidence of ‘Starquakes’ on Neutron Star


Follow us on Google+ , Twitter and Facebook

magnetar-flare1

An earthquake can be a pretty awe-inspiring natural event – a testament to the sheer power and size of shifting landmass. But what about seismic activity on a star? NASA’s Fermi satellite recently spotted evidence of seismic waves rippling throughout a high-energy neutron star, resulting in an intense “storm” of high-energy blasts.

The star in question, called SGR J1550-5418, is a magnetar – an incredibly dense and highly magnetized neutron star that spins at an exceptionally high speed. The typical neutron star boasts a magnetic pull trillions of times stronger than the Earth’s. A magnetar, by comparison, is about 1,000 times more magnetic than that.

Within the last four decades, only 23 magnetars in all have been identified, and among these stars, only three massive flares have ever been seen. The flares were related to “starquakes,” in which instability of a neutron’s pressing magnetic field literally shakes its surface.

“Fermi’s Gamma-ray Burst Monitor (GBM) has captured the same evidence from smaller and much more frequent eruptions called bursts.

Source : nature world news