Windows Holographic will let NASA explore what Curiosity sees on Mars


Mars Hololens

Microsoft announced the futuristic at-home augmented reality project Windows Holographic today, and one of the many different uses the company teased was a collaboration with NASA and the Curiosity rover team. Now, NASA has released more information on the software it built for Holographic, a program called OnSight.

By using Microsoft’s HoloLens visor, NASA scientists will be able virtually explore the areas of Mars that Curiosity is studying in a fully immersive way. It will also allow them to plan new routes for the rover, examine Curiosity’s worksite from a first-person view, and conduct science experiments using the rover’s data.

The science teams at NASA that have worked with Curiosity’s data before have had no problem learning plenty just by a computer screen, but Holographic and HoloLens will literally offer a new perspective on how to interpret the findings. Scientists will be able to virtually surround themselves with images from the rover and then explore the surface from different angles.

HERE is the video of Microsoft Hololens which makes Holographic Display near to reality :

That’s a big deal, according to OnSight’s project manager, who’s quoted in the release. “This tool gives them the ability to explore the rover’s surroundings much as an Earth geologist would do field work here on our planet,” he says.

We may still be decades away from landing humans on Mars, but it looks like Holographic and OnSight will help bridge the gap until then. The JPL team will start testing OnSight with Curiosity later this year. Deeper integration into future missions may have to wait until the next proposed Mars rover lands on the red planet in 2020.

Source : theverge

Ancient Mars May Have Been More Habitable Than We Thought


1024px-AncientMars

An artist’s impression of what ancient Mars may have looked like, based on geological data (Click Image to Download)

Data collected by the Curiosity Rover suggests Mars once featured a moderate climate capable of fostering lakes of liquid water and even a vast sea, and that this climate could have extended to many parts of the Red Planet.

NASA’s Curiosity Rover is currently investigating the lowest sedimentary layers of Mount Sharp, a section of rock 500 feet (150 meters) high known as the Murray formation. Observations taken by the robotic probe suggests the mountain was produced by sediments deposited in a large lake bed over tens of millions of years. The observation strongly suggests that ancient Mars maintained a long-lasting water-friendly climate.

According to NASA scientists, it’s an hypothesis that’s challenging the notion that warm and wet conditions were transient, local, or only underground. It now appears that Mars’ ancient, thicker atmosphere raised temperatures above freezing globally, but NASA scientists aren’t entirely sure how the atmosphere produced the required effects.

A Mountain in a Crater

Scientists have struggled to explain why the mountain sits inside a crater. Last year, a study suggested that the 3.5-mile-tall Mount Sharp formed as strong winds carried dust and sand into the crater in which it rests. It was actually bad news at the time because it suggested that the Gale Crater probably never contained a lake, which was one of the primary reasons why NASA sent Curiosity there in the first place.

But this new analysis has revived an older theory which suggests that Mount Sharp is the eroded remnant of sedimentary layers that once filled the crater — layers of silt that were originally deposited on a massive lakebed.

ROCKS

Cross-bedding seen in the layers of this Martian rock is evidence of movement of water recorded by waves or ripples of loose sediment the water passed over. Image credit: NASA/JPL-Caltech/MSSS.

Thanks to on-the-ground observations made by Curiosity, NASA scientists have now caught a glimpse of Mount Sharp’s lower flanks, which feature hundreds of rock layers. These layers, which alternate between lake, river, and wind deposits, bear witness to the repeated filling and evaporation of a Martian lake. Rivers carried sand and silt to the lake, depositing the sediments at the mouth of the river to form deltas. It was a cycle that repeated over and over again.

mgopor353csbffrefj8q

Cross-bedding seen in the layers of this Martian rock is evidence of movement of water recorded by waves or ripples of loose sediment the water passed over. Image credit: NASA/JPL-Caltech/MSSS.

“The great thing about a lake that occurs repeatedly, over and over, is that each time it comes back it is another experiment to tell you how the environment works,” noted Curiosity Project Scientist John Grotzinger in a NASA report. “As Curiosity climbs higher on Mount Sharp, we will have a series of experiments to show patterns in how the atmosphere and the water and the sediments interact. We may see how the chemistry changed in the lakes over time. This is a hypothesis supported by what we have observed so far, providing a framework for testing in the coming year.”fcc2setcjpg8el3rhq77

After the sediments hardened to rock, the resulting layers of sediment were sculpted over time into a mountainous shape by wind erosion that carved away the material between the crater perimeter and what’s now the edge of the mountain.

Greater Potential for Life?

The new discovery has major implications for our understanding of the Red Planet. It suggests Mars was far warmer and wetter in its first two billion years than previous assumed. It also suggests that Mars experienced a vigorous and dynamic global hydrological cycle that involved rains or snows to maintain such moderate conditions.

hegtl58ferc0e0fagbwu

A pic depicting a lake of water partially filling Mars’ Gale Crater, receiving runoff from snow melting on the crater’s northern rim. Image credit: NASA/JPL-Caltech.

Source : io9.com

Ground-Based Telescope Observes Exoplanet Transiting Bright Star


Follow us on Google+ , Twitter and Facebook

HD_85512_b_planet

 Graphical representation of an Exoplanet (Click Image to Download)

For the first time, an international team of astronomers has used a ground-based telescope to detect and observe the transit of a planet in front of a Sun-like star outside of our own solar system.

Until now, only space-based telescopes were capable of detecting the transits of exoplanets as they passed by bright stars.

Distortions caused by the atmosphere , the same phenomenon that makes stars look like they’re twinkling, makes it difficult for astronomers to observe transiting planets around bright stars from telescopes based on Earth.

In September, 2013, Japanese astronomers, using the ground-based Subaru telescope were able to observe the transit of super-Earth, GJ 1214b , but this exoplanet orbits a much dimmer star, known as a red dwarf.

According to team leader, Dr. Ernst de Mooij  of Queen’s University Belfast  in Northern Ireland, 55 Cancri e, was measured to have a diameter of about 26,000 km, which is twice that of Earth, but with eight times its mass.

hires

This artist’s conception shows the super-Earth 55 Cancri e (right) compared to the Earth (left). (NASA/JPL) (Click Image to Download)

The most recent achievement involves a super-sized Earth-like planet in a binary star system more than 40-light years away. Called 55 Cancri e , the planet orbits its primary star 55 Cancri A , in the constellation Cancer. The solar system’s secondary star, 55 Cancri B, is a red dwarf star which is located about 159,321,732,615 km from the primary star.

Scientists say that while the primary star can be seen with the naked eye, it takes ideal conditions such as a clear and moonless night.

646920main_pia15622-43_946-710

An artist’s concept of exoplanet 55 Cancri e as it closely orbits its star 55 Cancri A (NASA/JPL-Caltech) (Click Image to Download)

Previous studies have found that the planet makes one complete orbit around its sun in about 18 hours and that since its daytime temperature can reach nearly 1,700° Celsius, 55 Cancri e is not at all hospitable to life.

A number of small, extra-solar planets are expected to be discovered in the next ten years as new observational space missions — including NASA’s Transiting Exoplanet Survey Satellite (TESS) , and the European Space Agency’s Planetary Transits and Oscillations of Stars (PLATO)  –are launched.

Both PLATO – set to go in 2014 and TESS, scheduled for a 2017 launch – will look for transiting Earth-like planets circling nearby bright stars.

Source : blogs.voanews.com

NASA’s “Remastered” View of Europa is the Best Yet


Follow us on Google+ , Twitter and Facebook

europa

(Click image to download) This newly-reprocessed color view of Europa was made from images taken by NASA’s Galileo spacecraft in the late 1990s. Image credit: NASA/JPL-Caltech/SETI Institute

Europa, Jupiter’s sixth-closest moon, has long been a source of fascination and wonder for astronomers. Not only is it unique amongst its Jovian peers for having a smooth, ice-covered surface, but it is believed that warm, ocean waters exist beneath that crust – which also makes it a strong candidate for extra-terrestrial life.

And now, combining a mosaic of color images with modern image processing techniques, NASA has produced a new version of what is perhaps the best view of Europa yet. And it is quite simply the closest approximation to what the human eye would see, and the next best thing to seeing it up close.

The high-resolution color image, which shows the largest portion of the moon’s surface, was made from images taken by NASA’s Galileo probe. Using the Solid-State Imaging (SSI) experiment, the craft captured these images during it’s first and fourteenth orbit through the Jupiter system, in 1995 and 1998 respectively.

The view was previously released as a mosaic with lower resolution and strongly enhanced color (as seen on the JPL’s website). To create this new version, the images were assembled into a realistic color view of the surface that approximates how Europa would appear to the human eye.

converted PNM file

The cracked, icy surface of Europa. The smoothness of the surface has led many scientists to conclude that oceans exist beneath it. Credit: NASA/JPLredit: NASA

Continue reading NASA’s “Remastered” View of Europa is the Best Yet