[Video] A Must Watch Video of Black Hole which can Blow your Mind !!!!!


Galaxies-Galaxy-Space-Nature-HD-Wallpaper

(Click Image to Download)

A Black Hole is a location in space that possesses so much gravity, nothing can escape its pull, even light. We Can’t even see them but they are the Most Powerful and Dangerous things in the Universe. They Governs the whole Structure of Galaxies and Universe.

See this Incredible Video of Black Hole Comparison :-

Source : morn1415 (Youtube Video Uploader)

Discovery of a Pulsar and Supermassive Black Hole Pairing Could Help Unlock the Enigma of Gravity


Last year, the very rare presence of a pulsar (named SGR J1745-2900) was also detected in the proximity of a supermassive black hole (Sgr A**, made up of millions of solar masses), but there is a combination that is still yet to be discovered: that of a pulsar orbiting a ‘normal’ black hole; that is, one with a similar mass to that of stars.

The intermittent light emitted by pulsars, the most precise timekeepers in the universe, allows scientists to verify Einstein’s theory of relativity, especially when these objects are paired up with another neutron star or white dwarf that interferes with their gravity. However, this theory could be analysed much more effectively if a pulsar with a black hole were found, except in two particular cases, according to researchers from Spain and India.

Pulsars are very dense neutron stars that are the size of a city (their radius approaches ten kilometres), which, like lighthouses for the universe, emit gamma radiation beams or X-rays when they rotate up to hundreds of times per second. These characteristics make them ideal for testing the validity of the theory of general relativity, published by Einstein between 1915 and 1916.

“Pulsars act as very precise timekeepers, such that any deviation in their pulses can be detected,” Diego F. Torres, ICREA researcher from the Institute of Space Sciences (IEEC-CSIC), explains to SINC. “If we compare the actual measurements with the corrections to the model that we have to use in order for the predictions to be correct, we can set limits or directly detect the deviation from the base theory.”

Pulsars-with-Black-Holes

These deviations can occur if there is a massive object close to the pulsar, such as another neutron star or a white dwarf. A white dwarf can be defined as the stellar remnant left when stars such as our Sun use up all of their nuclear fuel. The binary systems, comprised of a pulsar and a neutron star (including double pulsar systems) or a white dwarf, have been very successfully used to verify the theory of gravity.

Until now scientists had considered the strange pulsar/black hole pairing to be an authentic ‘holy grail’ for examining gravity, but there exist at least two cases where other pairings can be more effective. This is what is stated in the study that Torres and the physicist Manjari Bagchi, from the International Centre of Theoretical Sciences (India) and now postdoc at the IEEC-CSIC, have published in the Journal of Cosmology and Astroparticle Physics. The work also received an Honourable Mention in the 2014 Essays of Gravitation prize.

The first case occurs when the so-called principle of strong equivalence is violated. This principle of the theory of relativity indicates that the gravitational movement of a body that we test only depends on its position in space-time and not on what it is made up of, which means that the result of any experiment in a free fall laboratory is independent of the speed of the laboratory and where it is found in space and time.

The other possibility is if one considers a potential variation in the gravitational constant that determines the intensity of the gravitational pull between bodies. Its value is G = 6.67384(80) x 10-11 N m2/kg2. Despite it being a constant, it is one of those that is known with the least accuracy, with a precision of only one in 10,000.

In these two specific cases, the pulsar-black hole combination would not be the perfect ‘holy grail’, but in any case scientists are anxious to find this pair, because it could be used to analyse the majority of deviations. In fact, it is one of the desired objectives of X-ray and gamma ray space telescopes (such as Chandra, NuStar or Swift), as well as that of large radio telescopes that are currently being built, such as the enormous ‘Square Kilometre Array’ (SKA) in Australia and South Africa.

Source : Daily galaxy

Gravity May Have Saved Very Early Universe – Study


Follow us on Google+ , Twitter and Facebook

A team of physicists from Denmark, Finland and the United Kingdom, led by Dr Matti Herranen University of Copenhagen, says that the spacetime curvature – in effect, gravity – is what may have saved the Universe from collapse immediately after the Big Bang.

1920x1080 (1)

(Click image to download)

Some previous studies have suggested that the production of Higgs particles during the accelerating expansion of the very early Universe (inflation period) should have led to instability and collapse. Physicists have been trying to find out why this didn’t happen, leading to hypotheses that there must be some new physics that will help explain the origins of the Universe that has not yet been discovered.

Dr Herranen and his colleagues, however, believe there is a simpler explanation.

In a new study, published in the journal Physical Review Letters, they describe how the spacetime curvature provided the stability needed for the Universe to survive expansion in that early period.

They investigated the interaction between the Higgs bosons and gravity, taking into account how it would vary with energy.

The results show that even a small interaction would have been enough to stabilize the Universe against decay.

“The Standard Model of particle physics, which scientists use to explain elementary particles and their interactions, has so far not provided an answer to why the Universe did not collapse following the Big Bang,” said co-author Prof Arttu Rajantie of Imperial College London.

“Our research investigates the last unknown parameter in the Standard Model – the interaction between the Higgs particle and gravity.”

This parameter cannot be measured in particle accelerator experiments, but it has a big effect on the Higgs instability during inflation. Even a relatively small value is enough to explain the survival of the Universe without any new physics!”

The physicists plan to continue their research using cosmological observations to look at this interaction in more detail and explain what effect it would have had on the development of the early Universe.

In particular, they will use data from current and future ESA’s missions measuring cosmic microwave background radiation and gravitational waves.

“Our aim is to measure the interaction between gravity and the Higgs field using cosmological data,” Prof Rajantie said.

“If we are able to do that, we will have supplied the last unknown number in the Standard Model of particle physics and be closer to answering fundamental questions about how we are all here.”

Source : Sci-news