The Largest void in universe Discovered


Hubble image of MACS J0717

Astronomers have detected the universe’s largest known cosmological supervoid in the Southern constellation of Eridanus.  Spanning some 1.8 billion light years !!!!!!!

(1 Light Years ~ 9 Trillion Kilometer)

It might be the single largest structure ever in the universe, and the only sign of it is nothing – just empty space 1.8 billion light years across. That’s 18,000 times larger than our entire galaxy.

the team remains mainly baffled as to why such an extensive void — in which the “density of galaxies is much lower than in the known universe” — could have actually arisen.

“This supervoid is certainly rare,” Greg Aldering, a cosmologist at Lawrence Berkeley National Lab in California, told Forbes.  “Underdense by about 30 percent, it’s not completely empty.  But what’s rare is the [spatial] extent of this void itself.”

Source : Forbes

The world’s biggest and most expensive scientific experiment is ready to re-start


cut dipole tunnel (0-00-00-00)

Underneath some nondescript farmland near Geneva, on the border of France and Switzerland, the world’s biggest and most expensive scientific experiment is ready to re-start.

Physicists hope it could lead to discoveries that could potentially represent the biggest revolution in physics since Einstein’s theories of relativity.

Among them is Prof Jordan Nash from Imperial College London, who is working on the CMS experiment at the LHC.

“We are opening a new window on the Universe and looking forward to seeing what’s there,” he said.
“As much as we have a lot of theories of what might be out there we don’t know. We’d love to find something completely unexpected and we might, and that’s the exciting bit.”

Why are scientists doubling the LHC’s energy?

They want a glimpse into a world never seen before. By smashing atoms harder than they have been smashed before physicists hope to see peel back another veil of reality.

The aim of the various theories of physics is to explain how the Universe was formed and how the bits that make it up work.

One of the most successful of these theories is called the “Standard Model“.

It explains how the world of the very, very small works.

Just as the world became very strange when Alice shrunk after drinking a potion in the children’s book Alice’s Adventures in Wonderland, physicists have found things are quite different when they study the goings on at scales that are even smaller than the size of an atom.

By doubling the energy of the LHC, it will enable them to discover new characters in the wonderful and mysterious tale of how the Universe works and came to be.

What is the Standard Model?

The Standard Model describes how the basic building blocks that make up atoms and govern the forces of nature interact.

And just as in Alice’s stories it features some eccentric characters, notably a family of 17 elementary particles.

Some are familiar from school physics lessons, household names if you like.

The biggest celebrity in the sub-atomic world is perhaps the electron, which orbits the atom and is involved in electricity and magnetism.

Another flashy A-lister is the photon, which is a particle of light.

But most particles from the Standard Model family are more niche, a little more art house if you like, and have strange names.

18dy75y04zvdppng

With the discovery of the sub-atomic world’s biggest celeb of all, the Higgs boson, scientists have now detected all the particles predicted by the Standard Model: a theory that beautifully explains how the Universe works in intricate detail.

What’s next?

Who knows, but possibly one of the biggest changes in thinking in physics for 100 years.

The sub-atomic world is set to become “curiouser and curiouser”.

Source : ITV , BBC

Is Dark Energy Evaporating Dark Matter?


Follow us on Google+ , Twitter and Facebook

Falling-Planet-Space-Wallpaper-2754

(Click Image to Download)

cientists at the University of Rome and Portsmouth recently published a paper which describes dark matter slowly being engulfed by dark energy.

Dark matter is almost completely undetectable matter that astronomers and cosmologists have calculated to exist within our universe, hence the name “dark”. Whereas dark energy is an accepted model of energy that permeates all matter and space, and is responsible for the acceleration of the expansion of the universe (to find out more about the two, click on the links above)

Why are they of interest now?

In the paper, the cosmologists discuss how recent astronomical data favours the idea that dark energy grows as it interacts with dark matter, which can help explain the mechanics of the expansion of the universe.

“If the dark energy is growing and dark matter is evaporating we will end up with a big, empty, boring universe with almost nothing in it,” said the Director of Portsmouth’s Institute of Cosmology and Gravitation, Professor David Wands.

Professor Wands continues by stating that “Dark matter provides a framework for structures to grow in the Universe. The galaxies we see are built on that scaffolding and what we are seeing here, in these findings, suggests that dark matter is evaporating, slowing that growth of structure,”.

How does this play a role in the understanding of our universe?

As our understanding of the universe changes, so does our approach in pursuing more knowledge about its every aspect. In 1998, researchers observing distant supernovae found that they were fainter than expected. The most accepted explanation for the variance is that the light emitted from the supernovae traveled a greater distance than theorists had predicted. This observation lead to the conclusion that space must have expanded at an accelerating rate as it traveled. The phenomenon was later attributed to the existence of dark energy, which completely revolutionized the scientific community’s way of looking at the structure of the universe, and in essence, the very foundation of our existence.

future_universe

If dark energy continues its dominance in the Universe, every galaxy beyond our neighborhood will one day no longer be visible

Now, researchers believe that it is the evaporation of dark matter that can explain why the growth of cosmic structures, such as galaxies and clusters of galaxies, seems to be slower than expected.

The availability of more data allows researchers such as Professor Wands, to examine the mechanics and interactions of various cosmic phenomena more precisely.

“Much more data is available now than was available in 1998 and it appears that the standard model is no longer sufficient to describe all of the data. We think we’ve found a better model of dark energy,” Wands continues, “However there is growing evidence that this simple model cannot explain the full range of astronomical data researchers now have access to; in particular the growth of cosmic structure, galaxies and clusters of galaxies, seems to be slower than expected”.

The paper itself was published by the American Physical Society, and although it looks very interesting, one must keep in mind that dark energy and dark matter is a subject in which very little is understood. As more data becomes available, a finer structure of our universe can be developed, which cannot be possible without the researchers such as Prof. Wands, Dr. Marco Bruni and their research students.

Source : from quarks to quasars

Universe may face a darker future


Artist’s impression of exocomets around Beta Pictoris

New research offers a novel insight into the nature of dark matter and dark energy and what the future of our Universe might be.

Researchers in Portsmouth and Rome have found hints that dark matter, the cosmic scaffolding on which our Universe is built, is being slowly erased, swallowed up by dark energy.

The findings appear in the journal Physical Review Letters, published by the American Physical Society. In the journal cosmologists at the Universities of Portsmouth and Rome, argue that the latest astronomical data favours a dark energy that grows as it interacts with dark matter, and this appears to be slowing the growth of structure in the cosmos.

Professor David Wands, Director of Portsmouth’s Institute of Cosmology and Gravitation, is one of the research team.

He said: “This study is about the fundamental properties of space-time. On a cosmic scale, this is about our Universe and its fate.

“If the dark energy is growing and dark matter is evaporating we will end up with a big, empty, boring Universe with almost nothing in it.

“Dark matter provides a framework for structures to grow in the Universe. The galaxies we see are built on that scaffolding and what we are seeing here, in these findings, suggests that dark matter is evaporating, slowing that growth of structure.”

Cosmology underwent a paradigm shift in 1998 when researchers announced that the rate at which the Universe was expanding was accelerating. The idea of a constant dark energy throughout space-time (the “cosmological constant”) became the standard model of cosmology, but now the Portsmouth and Rome researchers believe they have found a better description, including energy transfer between dark energy and dark matter.

Research students Valentina Salvatelli and Najla Said from the University of Rome worked in Portsmouth with Dr Marco Bruni and Professor Wands, and with Professor Alessandro Melchiorri in Rome. They examined data from a number of astronomical surveys, including the Sloan Digital Sky Survey, and used the growth of structure revealed by these surveys to test different models of dark energy.
Professor Wands said: “Valentina and Najla spent several months here over the summer looking at the consequences of the latest observations. Much more data is available now than was available in 1998 and it appears that the standard model is no longer sufficient to describe all of the data. We think we’ve found a better model of dark energy.

“Since the late 1990s astronomers have been convinced that something is causing the expansion of our Universe to accelerate. The simplest explanation was that empty space – the vacuum – had an energy density that was a cosmological constant. However there is growing evidence that this simple model cannot explain the full range of astronomical data researchers now have access to; in particular the growth of cosmic structure, galaxies and clusters of galaxies, seems to be slower than expected.”
Professor Dragan Huterer, of the University of Michigan, has read the research and said scientists need to take notice of the findings.

He said: “The paper does look very interesting. Any time there is a new development in the dark energy sector we need to take notice since so little is understood about it. I would not say, however, that I am surprised at the results, that they come out different than in the simplest model with no interactions. We’ve known for some months now that there is some problem in all data fitting perfectly to the standard simplest model.”