Compact Fusion Reactor Within A Decade, Says Lockheed Martin


LM-logo-700

American advance technology company Lockheed Martin says it’s within a decade of producing a fusion reactor that’s 90 percent smaller than previous designs.

what is fusion power ?

Merits_2

Fusion reactor may be the ultimate solution for today’s energy crisis . Fusion is the process that powers stars. Fusion power is the energy generated by nuclear fusion processes. In fusion reactions, two light atomic nuclei fuse to form a heavier nucleus (in contrast with fission power). In doing so they release a comparatively large amount of energy arising from the binding energy due to the strong nuclear force that is manifested as an increase in temperature of the reactants. Fusion power is a primary area of research in plasma physics.

The stakes are high, and so is the enthusiasm and skepticism about Lockheed’s announcement. After all, fusion could generate much more energy much more cleanly than today’s power plants that rely on nuclear fission.

But fusion reactors are elusive. So far, no researcher has been able to wring more energy from a fusion reactor than is needed to power it up.

Most efforts to create a fusion reactor have focused on containing hot plasma, a highly ionized gas, within strong magnetic fields in what’s called a “tokamak,” a doughnut-shaped device. Some of these tokamaks already being built or tested are enormous, including the world’s largest – 30 meters tall – at an international laboratory in France known as ITER. Its projected cost is $50 billion.

In an interview with MIT Technology Review, Tom McGuire, who leads Lockheed’s fusion research, said the aerospace, defense and security company has developed a compact reactor based on what he called “magnetic mirror confinement,” which is designed to contain plasma by reflecting particles from high-density magnetic fields to low-density fields.

By “compact” Lockheed means that its research reactor measures two meters long and one meter wide, much smaller than its rivals. And according to McGuire, it’s not small for small’s sake. He argues that the reduced size makes operations and hardware revisions quicker and more efficient. “That is a much more powerful development paradigm and much less capital intensive,” he said.

Small also means that a working fusion reactor of this size might easily fit in a tractor-trailer and be taken to a remote site to generate 100 megawatts of power. He concedes, “There are no guarantees that we can get there, but that possibility is there.”

Already, Lockheed’s fusion reactor team has conducted 200 firings with plasma at its research facility in Palmdale, Calif., known as Skunk Works, but it hasn’t yet produced any data on their results. Still, McGuire said, the plasma “looks like it’s doing what it’s supposed to do.”

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s